
International Journal of Scientific & Engineering Research Volume 3, Issue 3, March -2012 1

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

A Group Awareness and collaboration in
Distributed Software Development

Imran Ali Siddiqui, Manuj Darbari

Abstract—.Open-source software development projects manage to produce large, robust, complex, and successful systems. OSS are always collabora-

tive and distributed in nature as well as diff iculties are being occurred due to distance. However, there is a little spite of know ledge about management of
collaboration by open-source team. In this paper we look how distributed developers maintain group awareness. We interviewed developers, read
project communication, and looked at project artifacts from three successful open source projects. We found that distributed developers need to maintain
aw areness of one another, and that they maintain both a general aw areness of the entire team and more detailed know ledge of people w ith whom they

plan to w ork.
Collaborative software development presents a variety of coordination and communication problems, particularly when teams are geographi-

cally distributed. One reason for these problems is the diff iculty of staying aware of others – keeping track of information about who is working on the
project, who is active, and people have been working w ith which task. Current software development environments do not show much information about

people, and developers often must use text-based tools to determine w hat is happening in the group. We have built a system that assists distributed
developers in maintaining aw areness of others. Although there are several sources of information, this awareness is maintained pr imarily through text-
based communication these textual channels have several characteristics that help to support the maintenance of awareness, as long as developers are

committed to reading the lists and to making their project communication public.

Keywords: Collaboration Issues, Group awareness, Project Analyzer, Mining Component

——————————  ——————————

1 INTRODUCTION

Bject Software development is used to work in
current scenario of this real-world. Where work happens
in a distributed fashion. In this regard Open-source

software (OSS) development projects have developed projects
by programmers from many different parts of the world, who
rarely meet face-to-face due to distance. Software projects are
most often carried out in a collaborative fashion. The complex-
ities of software and the interdependencies between modules
mean that these projects present collaborators with several
coordination and communication problems. When develop-
ment teams are geographically distributed, these problems
often become much more serious [10, 18, 19, and 31]. Even
though projects are often organized to try and make modules
independent of one another, dependencies cannot be totally
removed [31]. As a result, situations can arise where team
members duplicate work, overwrite changes, make incorrect
assumptions about another person‘s intentions, or write code
that adversely affects another part of the project [18]. These
problems occur because of a lack of awareness about what is
happening in other parts of the project. Most development
tools and environments do not make it easy to maintain
awareness of others‘ activities [18]. Current tools are focused
around the artifacts of collaboration rather than people‘s activ-
ities (files in a repository rather than the actions people have

taken with them).

An artifact-based approach is clearly necessary for

certain types of work, but without better information about
people, smooth collaboration becomes difficult. Awareness is
a design concept that holds promise for significantly improv-
ing the usability of collaborative software development tools.
In this paper, we look that how distributed developers main-
tain group awareness. And group awareness information in-
cludes knowledge about who is on the project, where in the
code they are working, what they are doing, and what are
they planning. This knowledge seems vital if distributed de-
velopers are to coordinate their efforts, smoothly add code,
make changes that affect other modules, and avoid rework.
We carried out a study of open source teams to determine
whether developers need to stay aware of one another, what
awareness information developers keep track of, and how
they gather and maintain their knowledge. We interviewed
many developers on different well-established OSS projects,
examined email and chat archives, and analyzed project arti-
facts such as source-code repositories, web pages, and official
project documentation. We were surprised by our results.
First, we expected that projects would be set up to reduce
awareness requirements, with each software module carefully
partitioned and protected from others. However, we found
that official partitioning is limited, and that developers can
contribute to any part of the code – an organizational ap-
proach that increases awareness requirements. Second, we
found that the developers were able to maintain a good gener-
al awareness of other developers and their activities, and were
able to find more detailed information about people‘s activi-
ties when they needed to. However, we were surprised that
the main mechanisms for maintaining group awareness were
simple text communication tools – developer mailing lists and
text chat. Since these tools are disconnected from the project

O

————————————————

 Imran Ali Siddiqui, Research Scholar, JJTU Univrsity, Jhunjhunu, Rajasthan ,
India, E-mail: imranas@technologist.com

 Manuj Darbari is working as Associate Professor with the Department of
InfomationTechnology in Babu Banarsi Das National Institute of Technology
and Management,Lucknow, India E-mail: manujuma@gmail.com

 As far as the utility point of object oriented database systems is concerned,

mailto:manujuma@gmail.com

International Journal of Scientific & Engineering Research Volume 3, Issue 3, March -2012 2

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

artifacts, and because they require explicit effort, we expected
them to provide only incidental awareness – but in all three
projects they were the main source of information. When we
looked more closely at the email and chat messages, we found
that these text channels have a number of characteristics that
are valuable for the provision and collection of awareness in-
formation. First, they are public, and so allow all the develop-
ers on the list to become peripheral participants in each others‘
conversations. By overhearing others and by seeing who is
talking about what, developers can gather important group
awareness information. Second, mailing lists allow people to
find out who the experts are in an area, simply by initiating a
discussion: because the messages go to the entire group, the
‗right people‘ will identify themselves by joining the conversa-
tion.

These awareness mechanisms can only work if most
of the discussion between developers happens on the public
channels and we found that there are strong elements of orga-
nizational culture on these projects that do just this. In particu-
lar, there is a strong culture of ‗making it public‘ where devel-
opers are willing to answer questions, discuss their plans, re-
port on their actions, and argue design details, all on the mail-
ing list. Our findings provide details of how one kind of real-
world distributed group maintains awareness and manages
coordination, and exposes some of the underlying mechan-
isms that allow developers to overcome the problems of dis-
tance. We were impressed that ordinary verbal communica-
tion could be so effective in supporting awareness and coordi-
nation – particularly when the discussions so often refer to
work artifacts that are not represented in the communication
system. Although not all work settings are similar to open
source development, we believe that our findings can assist
analysis of awareness in other distributed work situations, and
that the principles of awareness on OSS projects can benefit
other types of computer-supported distributed work. Our
study also suggests that groupware designers should tread
carefully when inventing tools for distributed software devel-
opment.

Awareness in collaboration network

Awareness has received attention in the Computer-

Supported Cooperative Work (CSCW) community; this know-
ledge has not been considered extensively in development
settings. We believe that awareness is a design concept that
holds promise for significantly improving the usability of col-
laborative software development tools. Collaboration is an
important research area of software engineering – where
teams are common and good communication and coordina-
tion are essential for success. We review issues of collaboration
in distributed software development, the basics of group
awareness, and the awareness requirements that we have de-
termined from observations of open source projects.

 Collaboration Issues in Software Development

Collaboration support is a basic part of distributed
development where teams have long used version control,
email, chat groups, code reviews, and internal documentation
to coordinate activities and distribute information. but these
solutions generally either represent the project at a very coarse
granularity require considerable time and effort or depend on
people‘s current availability. Researchers in software engineer-
ing have found a number of problems that still occur in group
projects and distributed software development. They found
that it is difficult to determine when two people are making
changes to the same artifacts [31] and communicate with oth-
ers across time zones and work schedules [19]. They find part-
ners for closer collaboration or assistance on particular issues
[25] and also determine who has expertisation or deep know-
ledge about the different parts of the project [29]. They analyze
that benefit from the opportunistic and unplanned contact that
occurs when developers are co-located, since there is little vi-
sibility of others‘ activities. As Herbsleb and Grinter [18] state,
lack of awareness – ―the inability to share the same environ-
ment and to see what is happening at the other site‖ is one of
the major factors in these problems. These are relevant issues
to find the good coordination in distribute system.

Group Awareness

In many group work situations, awareness of others

provides information that is critical for smooth and effective
collaboration. Group awareness is the understanding of who is
working with you, what they are doing, and how your own
actions interact with theirs [13]. Group awareness is useful for
coordinating actions, managing coupling, discussing tasks,
anticipating others‘ actions, and finding help [16]. The com-
plexity and interdependency of software systems suggests that
group awareness should be necessary for collaborative soft-
ware development. Knowledge of developer activities, both
past and present, has obvious value for project management,
but developers also use this information for many other pur-
poses – purposes that assist the overall cohesion and effective-
ness of the team. For example, knowing the specific files and
objects that another person has been working on can give a
good indication of their higher-level tasks and intentions;
knowing who has worked most often or most recently on a
particular piece of code indicates who to talk to before starting
further changes; and knowing who is currently active can
provide opportunities for real-time assistance and collabora-
tion.

 In co-located situations, three mechanisms help
people to maintain awareness: explicit communication, where
people tell each other about their activities; consequential
communication [27], in which watching another person work
provides information as to their activities and plans; and feed
through [12], where observation of changes to project artifacts
indicates who has been doing what. Of these mechanisms,
explicit communication is the most flexible, and previous re-
search has looked at the ways that groups communicate over

International Journal of Scientific & Engineering Research Volume 3, Issue 3, March -2012 3

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

distance, through email, text chat, and instant messaging
[23,28]. However, since intentional communication of aware-
ness information also requires the most additional effort,
many awareness systems attempt to support implicit mechan-
isms as well as communication. General approaches include
providing visible embodiments of participants and visual re-
presentations of actions that allow people to watch each other
work, and overview visualizations of artifacts that show feed
through information. Although group awareness is often tak-
en for granted in face-to-face work, it is difficult to maintain in
distributed settings.

This is particularly true in software development oth-
er than access to the shared code repository, development en-
vironments and tools provide almost no information about
people on the project. Although communication tools such as
email lists and chat systems help to keep people informed on
some projects, these text-based awareness mechanisms require
considerable effort, and are not well integrated with informa-
tion about the artifacts of the project. As a result, coordination
problems are common in distributed settings, and collabora-
tion suffers. A few research systems do show awareness in-
formation (26, 14), but it is not clear that these tools really pro-
vide the awareness information that is needed by developers.

Need of Awareness in Distributed Software Development

The need for awareness therefore depends on the de-
gree to which developers must coordinate. The main benefits
of group awareness on a distributed software project would be
in simplifying communication and improving coordination of
activity. Software systems involve dependencies and linkages
that require knowledge of others‘ activities. These dependen-
cies can cause problems when development teams are distri-
buted [7, 5]. There is a question that have open source projects
managed to reduce these dependencies – simply based on the
fact that they do manage to produce successful software?
There are two ways that these dependencies can be reduced -
by reducing the number of developers, or by strongly parti-
tioning the code. The effects of increasing the number of de-
velopers has been studied before: Brooks‘ Law states that ―the
complexity and communication costs of a project rise with the
square of the number of developers‖. Raymond [8] suggests
that OSS projects avoid this explosion of connections by hav-
ing only a small set of core developers, with a larger ‗halo‘ of
people whose activity is limited. Raymond discusses projects
with one to three core developers, where awareness can likely
be easily maintained through verbal communication; at the
higher end, Mockus and colleagues [3] suggest that a core of
ten to fifteen developers is the maximum that can be handled
without the need to subdivide into separate subprojects. This
number is large enough that the maintenance of awareness
would not be simple. Responsibility is a strange concept in a
collaborative volunteer project. With most things there are
several people who know their stuff, so there's no clear con-
cept of responsibility. The exception is of course where some-
one's name is down against something. For example, I put my
name against the <abc> package as its maintainer, and so I am

responsible for it. When I commit my new port, I will be re-
sponsible for that. On Apache http and Subversion, in con-
trast, official partitioning was almost nonexistent – on these
projects, ―all committers are responsible for all parts of the
code‖ and in fact the traditions of both projects argue explicit-
ly against partitioning. Part of the reason is likely that these
projects are much smaller than Net BSD, but they have also
found that ownership can cause as many coordination prob-
lems as it solves: Apache http developer A1: the paradigm is
that all committers are responsible for all parts of the code.
This is to lessen the impact of 'owned' modules. a few modules
were 'owned' by a particular individual, but when that person
left, the module rotted, those modules are detested by the
general http community because they were never cleanly in-
tegrated and there was 'ownership' regarding that module that
was never clearly relinquished. In general, we really try to
avoid 'clear' ownership. It's been bad before when that's hap-
pened.

 The summary statistics for http and Subversion re-
flect this attitude: the largest fraction that any developer con-
tributes to any single file is about two thirds, and less than a
third of the files are strongly associated with a single develop-
er. The lack of clear partitioning reinforces the findings of
Mockus and colleagues [3], who suggest that it is not simply
the structure of a project that enables developers to coordinate
their actions: Lack of clear ownership strongly suggests some
other mechanism for coordinating contributions. It seems that
rather than any single individual writing all the code for a
given module, those in the core group have a sufficient level of
mutual trust that they contribute code to various modules as
needed. It is a matter of recognition of expertise than one of
strictly enforced ability to make commits to partitions of the
code base. This way of organizing projects through areas of
expertise rather than through explicit partitioning does not
remove awareness requirements; it actually increases them.
When developers can work anywhere, they need to know who
is active in the area, and who experts are. So group awareness
becomes a critical component in successful coordination.
When we asked developers what kinds of information about
others that they tracked, they mentioned two types. First, de-
velopers maintain a broad awareness of who are the main
people working on their project, and what their areas of exper-
tise are. Second, when a developer wishes to do work in a par-
ticular area, they must gain more detailed knowledge about
who are the people with experience in that part of the code.

Project Analyzer

Project Analyzer gathers information about project ar-

tifacts and developer‘s actions with those artifacts, and visua-
lizes this awareness information either as a stand-alone tool or
as a plug-in inside the Eclipse IDE. We have developed an
awareness system called Project Analyzer to address some of
the awareness issues that we have seen in distributed devel-
opment projects. Project Analyzer consists of two main parts
(i). Mining component (ii). Awareness visualizations.

International Journal of Scientific & Engineering Research Volume 3, Issue 3, March -2012 4

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

Mining Component

The mining component analyzes a project‘s source code to
produce facts for use by the Project Analyzer visualization
displays. To gather developer activity information at a finer
grain size than repository commits, a shadow CVS repository
is maintained in Figure 1. User edits are auto-committed to the
shadow repository as developers edit source code files with
each auto-commit a new version of the file is stored in the
shadow repository. The mining component analyzes the auto-
committed versions against each other and the versions in the
shared CVS (Concurrent Versioning System) repository to
obtain user edit information that can be understood in terms
of the project‘s software architecture. The mining component
is composed of two fact extractors: the software architecture
fact extractor and the user edit fact extractor. The software
architecture fact extractor is run against the software repositoy
to obtain entity relationship facts. Entity facts extracted in-
clude: package, class and method facts. Relationship facts ex-
tracted include: calls, contains, imports, implements and ex-
tends relationships. The software architecture facts are used
by the visualization system to present the software structure.
The user edit fact extractor is run against the shadow reposito-
ry to obtain information about the methods a developer is
changing. The user edit facts are used by the visualization to
present developer activity information.

Figure 1: User edit fact extraction

The software architecture fact extractor is imple-
mented in two stages and may either be run on the shadow
repository or on the shared software repository in Figure 2.
The first stage, the base fact extractor uniquely names the enti-
ties in the source code and extracts the facts of interest. This
process is accomplished with a TXL [32] program using syn-
tactic pattern matching [11]. The second stage, the reference
analyzer, resolves references between software architecture
entities. The reference analyzer extracts scope facts from the
project source code and integrates them with the facts ex-
tracted in stage one. This process involves resolving the types
of variables and return types of methods that are passed as
arguments to method calls. The types of all the arguments are
identified. Then scope, package, class, and method facts are
analyzed to determine which package and class the method

belongs to. To resolve calls to the Java library, the full Java API
is first processed by the Project Analyzer mining component
(this is only done once for all projects).

Figure 2: Software architecture fact extraction from Java
projects

The user edit fact extractor (Figure 3) is implemented in
three stages and is run against two versions of the project
source code. The first stage splits the files into separate class
and method snippets. The second stage compares and matches
revisions of the code snippets. Initially, methods are matched
based on their names. If a method match is not found at the
method name level, methods are compared based on the per-
centage of lines of code that match between all methods. If a
method‘s name is changed, a match based on percentage of
similarity is still found between the two versions. When no
match is found for a method from an earlier revision, the me-
thod is identified as having been added. When no match is
found for a method from a later revision, the method is identi-
fied as having been removed. Facts about method additions
and method removals are stored in the user edit fact base.
Once the methods from each revision have been matched, a
line diff is performed on each pair of methods. The diff algo-
rithm gives us information about what lines have been added
and removed from a method, and this information is stored in
the user edit fact base. The complete fact base contains unique-
ly identified facts indicating all packages, classes, methods,
variables, and relationships for a Java project and all user
edits. These facts are used by the visualization component to
show activity and proximity information. The time and space
needed for fact extraction and fact base storage depends on
the size of the code.

International Journal of Scientific & Engineering Research Volume 3, Issue 3, March -2012 5

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

 Figure 3: User edits fact extraction

Analyzer Report on activities and commits

Project Analyzer‘s activity awareness display visua-
lizes team members‘ past and current activities on project arti-
facts. The goals of this display are to give collaborators an
overview of who works on the project and provide a general
sense of who works in what areas and they allow to changes
to be tracked without much effort. The display uses the ideas
of edit wear, interaction histories, and overviews. Edit wear is
a concept introduced by Hill and colleagues [30]. Their overall
motivation is the question of how computation can be used to
improve ―the reflective conversation with work materials‖
and the observation that most computational artifacts do not
show any traces of the ways that they have been used, unlike
objects in the real world.

The basic idea is to maintain and exploit object-
centered interaction histories: record on computational object.
The events that comprise their use and display useful graphi-
cal abstractions of the accrued histories as part of the objects
themselves.‖ [30] Hill and colleagues were primarily interest-
ed in an individual‘s reflection on their use of work artifacts,
but there is obvious value for group awareness as well. In
Project Analyzer, the artifacts are the files in a CVS repository
(shadow or regular), and the interaction history is a record of
all of the actions that a person undertakes with them (gathered
unobtrusively by the fact extractor as people carry out their
normal tasks). We take these interaction histories and visual-
ize them on an overview representation of the entire project.
Overviews provide a compact display of all the project arti-
facts, and allow information to be gathered at a glance. In ad-
dition, the overview representation can be overlaid with visual
information about the interaction history or about changes to
the artifacts. Although some tools such as CVS front-ends do
limited visualization of the source tree. Our goal here is to
collect much more information about interaction, and provide
richer visualizations that will allow team members to quickly
gather awareness information.

Related Work

A number of software engineering tools provide some
degree of information about other members of the team (such
as their identities or their assigned tasks), or provide facilities
for team communication [10,14,24]. However, only a few sys-
tems combine information about people‘s activities with re-
presentations of the project artifacts. Two of them has done
this very well as Augur [15] and TUKAN [25,26]. TUKAN is
one of the first systems to explicitly address the question of
awareness in software development. The basic representation
used in a Smalltalk class browser, onto which awareness in-
formation is overlaid. In particular, the system shows the dis-
tance of other developers in ‗software space,‘ using a software
structure graph as the basis for calculating proximity. The
main difference in our approach with Project Analyzer is in
the use of an overview; where TUKAN [25] presents relevant
information about others who may be encroaching on a devel-
oper‘s current location, Project Analyzer provides a general
overview of the entire project. Augur is a system similar to
Ball and Eick‘s [9], that presents line-based visualizations of
source code along with other visual representations of the
project.

 The goal of Augur is to unify information about
project activities with information about project artifacts; the
system is designed to support both ongoing awareness and
investigation into the details of project activity. Project Ana-
lyzer also uses the ideas of edit/read wear and combining
activity and artifact information; the main difference between
the two systems is that Augur is a large-scale system with
many views and a highly detailed representation of the
project, whereas Project Analyzer‘s visualization is designed
only to support the two awareness questions seen in our work
with existing projects (―who is who in general‖ and ―who
works in this area of the code‖). In addition, Project Analyzer
is based on a much finer temporal granularity of activity than
is Augur, which uses repository commits as its source of activ-
ity information. We see Project Analyzer as more suited to
day-to-day activities on a collaborative project, and specific
investigations where developers wish to explore the history of
the project in more detail.

Awareness Transportability

Our findings show how one kind of real-world distri-

buted group maintains group awareness. Although this is on-
ly a small part of the overall story of how OSS teams overcome
the problems of distance, we have been able to expose some of
the information sources and mechanisms that allow these
projects to stay coordinated in Summary of capabilities. Here
we consider ways that our results can be used in the broader
context: we look at whether the specific awareness mechan-
isms seen in the study could be used in other distributed work
settings, whether there are underlying principles that can be
applied more widely, and whether new tools could assist
awareness on open-source projects.

Although simple text communication works well in
these projects, and although text tools like MUDs have been

International Journal of Scientific & Engineering Research Volume 3, Issue 3, March -2012 6

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

successful in other work environments [12,16], it is not clear
that email lists and chat systems are the answer for other dis-
tributed teams. Developers on open source projects are often
‗the best of the best‘ in terms of technical skill and ability to
get things and so it is possible that text-based awareness is
feasible for them simply because they are very capable indi-
viduals. Also, open-source developers to some degree self-
select for success in this environment: if a developer is not able
to maintain adequate awareness and is not able to coordinate
activity successfully, then because participation is voluntary,
there is a good chance that they will not stay with the project.
Finally, it appears that one of the primary motivations in open
source communities is reputation among one‘s peers (rather
than things like money or altruism) [23]. Although this is un-
likely to be an explicit rating or ranking reputation is undoub-
tedly one reason why some of the more effortful parts of main-
taining group awareness – reading the lists, writing good-
quality responses, helping others – continue to be done by the
majority of the community, and one reason why the commu-
nication forums sustain critical mass [5].

SUMMARY OF CAPABILITIES AND REQUIREMENTS FOR

THE AWARENESS MECHANISMS

(a). Dynamic information sources:

Developer mailing lists: Overhearing is a primary
mechanism; wide readership allows authors to reach
‗the right people.‘ Requires additional communication
effort, a strong culture of making things publicly and
a critical mass of readers.

Text chat: Provides for ad-hoc communication and
overhearing of informal and work-related discus-
sions. Risk of removing communication from mailing
lists; however, summaries can be posted back to the
list.
Commits. Indicate people‘s activity levels and area of
work. Can be time-consuming and tedious to read.

(b). On-demand awareness queries:

 Asking senior developers: Allows use of social net-
works to find other people. Requires explicit commu-
nication and an organizational culture that allows and
promotes contact.

 ‗Maintainer‘ field: Explicit indication of who is talking
about changes. Effort is required to keep the informa-
tion up to date; the project may not agree with code
ownership.

 Code repository: Allows inspection of activity based
on changes to project artifacts. Text-based displays
mean that some information such as frequency of ac-
tivity is difficult to see.

 Project documentation: Provides direct information
about activities and areas of work. Must be kept up to
date.

 Issue and bug trackers: Provide information about as-
signments, and show focused communication about
each issue. Require explicit effort, and may remove
communication from other lists.

There are many people outside of open source who are techni-
cally proficient, capable, and highly motivated; it will be inter-
esting to see whether text-based awareness can work in other
distributed groups.

 Basic principles to generalize distributed awareness

Even if the specifics of these projects cannot be used

widely, there are a few general principles that can have broad-
er applicability in supporting distributed awareness. First is
the importance of verbal communication, and the value of
different forms and venues for discussion. For the most part,
our findings reinforce previous results; however, it is worth
noting the value of providing support for both ‗formal‘ discus-
sions (on the mailing list) and informal, ad-hoc talk on the chat
system. It is also useful to know that written conversation can
in some settings take the place of audio communication (a re-
sult that differs from other conclusions [30]. Second is the sig-
nificance of overhearing as an awareness tool.
Although the usefulness of this behavior has been recognized
in studies of audio channels, studies of textual communication
have sometimes characterized these ‗lurkers‘ negatively, as
free riders.

 In many circumstances, however, they may be simp-
ly acting as peripheral participants, gathering general aware-
ness that helps them to keep in touch with the community and
the project. Third is the value of broadcast communication. As
seen in collocated situations, the ability to speak to an ex-
pected audience
rather than to a specific one had several advantages in finding
the right people and allowing people to decide for themselves
whether to respond. This principle and the one above suggest
that designers should consider whether communication facili-
ties should be public (like a chat server) rather than point-to-
point (like instant messaging or private email).

 Open Source setting be better supportive platform

There were some indications of difficulties that were dis-
cussed in the interviews, even if these did not prevent people
from maintaining awareness. For example, comments above
mention the effort involved in reading the lists (particularly
commit logs), the difficulty of managing one conversation in
two communication channels (mailing list and chat), and the
problems of looking for information in the mail archives. We
are interested in whether developers‘ existing awareness sup-
port could be augmented without fundamentally changing it.
We have several possibilities that we are currently discussing
with developers:

International Journal of Scientific & Engineering Research Volume 3, Issue 3, March -2012 7

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

• Mailing lists are time-consuming; we are looking at whether
new representations of messages and threads can help to sup-
port group awareness with less effort.
• CVS commits are sometimes ignored due to time con-
straints; it may be possible to show dynamic awareness infor-
mation from the CVS repository in a form that allows for easi-
er browsing, filtering, and inspection.
• The splitting of communication between mail, chat, and is-
sue tracker suggests potential for tools that link related con-
versational streams. This could allow conversations to be seen
in the context of work artifacts without losing the public na-
ture of the discussion.
• The idea of making things public could be extended to other
types of interactions. Although this is already the basis for
‗edit wear and read wear‘ approaches such as Augur [17], the
idea could be extended to interactions with awareness infor-
mation sources. For example, it could be valuable to visualize
the frequency with which people look at different information
in the CVS repository.
• Search tools could be designed with awareness queries in
mind. Archives are valuable resources for group awareness,
particularly for new developers, but it is not known how
people look for awareness information in these kinds of data-
bases. Mining the archives should be done with caution, how-
ever, given the likely reluctance to have certain types of social
relationships made explicit.

FUTURE RESEARCH

Our future plans for Project Analyzer involve im-
provements and new directions in both the mining and the
visualization components. The current version of the system
primarily addresses those awareness issues that we saw in
distributed projects, but the basic tools and approaches can be
used for a variety of additional purposes. First, we currently
visualize source code that is in the process of being edited, and
therefore the source code may be inconsistent, incomplete and
frequently updated. We are investigating techniques for im-
proving the robustness and performance of the fact extraction
process, and techniques for visualizing partial information
given these circumstances. Our system also only records user
edits to the method level. We plan to move towards even finer
grained awareness so that we can handle concurrent edits in
some situations. Second, the capturing and recording of de-
velopers' activities supports new software repository mining
research in addition to supporting awareness. Developers
normally change a local copy of the software under develop-
ment, and periodically synchronize their changes with the
shared software repository. Unfortunately, the developer‘s
local interactions with the source code are not recorded in the
shared software repository. With our finer-grained approach,
the local interaction history of the developer is recorded and is
available to be mined. Example software mining research di-
rections include:
• Discovery of refactoring patterns. Analyzing local interac-
tion histories may be useful for identifying novel refactoring
patterns and coordinating refactoring that affects other team

members.
• Discovery of browsing patterns. Local interaction history
includes the developer's searching, browsing and file access
activities. Analyzing this browsing interaction may be useful
in supporting a developer in locating people or code exem-
plars.
• Discovery of expertise. Since the fact base contains facts
from the Java API, we can determine what parts of that API
each developer has used, and how often. It can now be possi-
ble to determine who has used a particular Java widget or
structure frequently, and to build that knowledge into the de-
velopment environment. We also plan to refine and expand
the visualization component. Short-term work will involve
testing the representations and filters to determine how the
information can be best presented to real developers. Longer
range plans involve extensions to the basic idea of integrating
information about activities with information about project
artifacts. For example, we plan to extend our artifact collection
to include entities other than those in source code. Many other
project artifacts exist, including communication logs, bug re-
ports and task lists. We hope to establish additional facts to
model these artifacts and to use the new artifacts and their
relationships in the awareness visualizations. We can also ex-
tend our use of the interaction histories to other areas. As dis-
cussed above, recording developers' interaction history and
extracting method call facts from the source code provides us
with basic API usage information. We can present this infor-
mation in the IDE to provide awareness of technology exper-
tise.

Finally, we plan to extend the range of awareness in-
formation that can be seen in the visualizations. As mentioned
above, displaying information about refactoring, browsing,
and expertise may be useful to developers in a distributed
project. Other possibilities include questions of proximity –
―who is working near to me?‖ in terms of the structures and
dependencies of the software system under development, and
questions of scope and effect – ―how many people will affect if
I change this module?‖ Proximity is an important concept in
software development because developers who near to one
another (in code terms form) an implicit sub-team whose con-
cerns are similar and whose interactions are more closely
coupled [20]. Proximity groups are not defined in advance and
change membership as developers move from task to task;
therefore, it is often very difficult to determine who is current-
ly in the group.

CONCLUSIONS
Open-source software development projects are ex-

amples of collaborative, distributed work where people are
able to maintain awareness of each other and of others‘ activi-
ties. In this study we looked at requirements and mechanisms
for group awareness on three open source projects. We found
that distributed developers maintain both a general awareness
of the entire team and more detailed knowledge of people
with they are plan to work. The primary means for maintain-
ing awareness were mailing lists and chat tools; we were

International Journal of Scientific & Engineering Research Volume 3, Issue 3, March -2012 8

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

struck by the capabilities of text-based communication for
supporting awareness, and by the importance of the organiza-
tional culture in promoting the kinds of behavior that make
good group awareness possible through these tools.

This study is one of the first to consider how aware-
ness works in the real world. One thing that is clear from the
study, in addition what we discuss above is that awareness is
both complex and subtle. There are many leads in our data
that we were unable to address here. These issues – such as
the ways that non-English speaking developers use the lists,
how occasional face-to-face gatherings assist group awareness,
how reputation really affects mailing-list practices, what kinds
of miscommunications arise in list-based discussion, or the
ways that project size affect awareness mechanisms will be
investigated as we look more closely at different parts of the
data. We have presented a system to address some of the
awareness problems experienced in distributed software de-
velopment projects. Project Analyzer contains two main parts:
a mining component and a visualization system. The system
keeps track of fine-grained user activities through the use of a
shadow repository, and records those actions in relation to the
artifact-based dependencies extracted from source code.
Second, visualizations represent this information for develop-
ers to see and interact with. The visualizations present a
project overview, overlaid with visual information about
people‘s activities. Although our prototypes have limitations
in terms of project size, they can provide developers with
much-needed information about who is working on the
project, what they are doing and how the project is changing
over time.

REFERENCES

[1] 1. Churchill, E., and Bly, S, It's all in the words: Supporting Work

Activities with Lightweight Tools. Proc. ACM GROUP 1999, xx-

yy.

[2] Fitzpatrick, G., Kaplan, S. Mansfield, T., Arnold D., and Segall, B.,

Supporting Public Availability and Accessibility with Elvin, JCSCW,

11(3), 447-474.

[3] Mockus, A., Fielding, R., and Herbsleb, J. Two Case Studies of Open

Source Software Development: Apache and Mozilla, ACM ToSEM,

11, 3, 2002, 309-346.

[4] Whittaker, S., Terveen, L., Hill, W., and Cherny, L., The Dynamics of

Mass Interaction, Proc. SCW 1998, 257-264.

[5] Herbsleb, J. and Grinter, R. Architectures, Coordination, and Dis-

tance: Conway's Law and Beyond. IEEE Software, Sept/Oct 1999, 63-

70.

[6] Froehlich, J. and Dourish, P., Unifying Artifacts and Activities in a

Visual Tool for Distributed Software Development Teams. Proc. ICSE

2004, 2004, 387-396.

[7] Herbsleb, J., Mockus, A., Finholt, T., and Grinter, R., Distance, De-

pendencies, and Delay in a Global Collaboration, Proc. ACM CSCW

2000, 319-328.

[8] Raymond, E., The Cathedral and the Bazaar, O‘Reilly, 2001.

[9] Ball, T., and Eick, S. Software visualization in the large. IEEE Com-

puter, Vol 29, No 4, 1996.

[10] Chu-Caroll, M., and Sprenkle, S. Coven: Brewing better collaboration

through software configuration management. Proc FSE-8, 2000.

[11] Cordy, J., Dean, T., Malton, A., and Schneider, K., Software Engineer-

ing by Source Transformation Experience with TXL, Proc. SCAM'01

- IEEE 1st International Workshop on Source Code Analysis and

Manipulation, 168-178, 2001.

[12] Dix, A., Finlay, J., Abowd, G., and Beale, R., Human-Computer Inte-

raction, Prentice Hall, 1993.

[13] Dourish, P., and Bellotti, V., Awareness and Coordination in Shared

Workspaces, Proc. ACM CSCW 1992, 107-114.

[14] Elliott, M., and Scacchi, W., Free software developers as an occupa-

tional community resolving conflicts and fostering collaboration,

Proc. ACM GROUP 2003, 21-30.

[15] Froehlich, J. and Dourish, P., Unifying Artifacts and Activities in a

Visual Tool for Distributed Software Development Teams. To ap-

pear, Proc. ICSE 2004.

[16] Gutwin, C. and Greenberg, S. A Descriptive Framework of Work-

space Awareness for Real-Time Groupware. Journal of Computer-

Supported Cooperative Work, Issue 3-4, 2002, 411-446.

[17] Gutwin, C., Penner, R., and Schneider, K., Group Awareness in Dis-

tributed Software Development, to appear, Proceedings of ACM

CSCW 2004, Chicago, 2004.

[18] Herbsleb, J., and Grinter, R., Architectures, coordination, and dis-

tance: Conway‘s law and beyond. IEEE Software, 1999.

[19] 19. Herbsleb, J., Grinter, R., and Perry, D., The geography of coordi-

nation: dealing with distance in R&D work. Proc. ACM SIGGROUP

conference on supporting group work, 1999.

[20] Herbsleb, J., Mockus, A., Finholt, T., and Grinter, R., Distance, De-

pendencies, and Delay in a Global Collaboration, Proc. ACM CSCW

2000, 319-328.

[21] McDonald, D., and Ackerman, M., Just Talk to Me: A Field Study of

Expertise Location Finding and Sustaining Relationships, Proc. ACM

CSCW 1998, 315-324.

[22] Mockus, A., Fielding, R., and Herbsleb, J. Two Case Studies of Open

Source Software Development: Apache and Mozilla, ACM ToSEM,

11, 3, 2002, 309-346.

[23] Monk, A., and Watts, L., Peripheral Participants in Mediated Com-

munication, Proc. ACM CHI 1998, v.2, 285-286.

[24] Raymond, E., The Cathedral and the Bazaar, O‘Reilly, 2001.

[25] Schummer, T., Lost and found in software space. Proc 34th HICSS,

2001.

[26] Schummer, T., and Schummer, J., TUKAN: A team environment for

software implementation. Proc. OOPSLA 1999.

[27] Segal, L., Designing Team Workstations: The Choreography of

Teamwork, in Local Applications of the Ecological Approach to Hu-

man-Machine Systems, P. Hancock, J. Flach, J. Caird and K. Vicente

ed., Erlbaum, 1995, 392-415.

[28] Whittaker, S., Frohlich, D., and Daly-Jones, O., Informal Workplace

Communication: What is It Like and How Might We Support It?,

Proc. ACM CHI 1994, 131-137.

[29] B. Zimmermann and A. M. Selvin. A framework for assessing group

memory approaches for software design projects. Proc. Conference

on Designing interactive systems. 1997.

[30] Hill, W.C., Hollan, J.D., McCandless, J., and Wroblewski, D. Edit

wear and read wear. Proc. ACM CHI 1992, 3-9.

[31] Kraut, R., and Streeter, L., Coordination in software development.

CACM, 1995.

[32] Malton, A., Schneider, K., Cordy, J., Dean, T., Cousineau, D., and

Reynolds, J., Processing Software

[33] Source Text in Automated Design Recovery and Transformation.

International Journal of Scientific & Engineering Research Volume 3, Issue 3, March -2012 9

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

Proc. 9th International Workshop on Program Comprehension, 127-

134, 20

